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a b s t r a c t

Rational functions of the Padé type are used for the calibration curve (CCM), and standard addition
(SAM) methods purposes. In this paper, the related functions were applied to results obtained from the
analyses of (a) nickel with use of FAAS method, (b) potassium according to FAES method, and (c) salicylic
acid according to HPLC-MS/MS method. A uniform, integral criterion of nonlinearity of the curves,
obtained according to CCM and SAM, is suggested. This uniformity is based on normalization of the
approximating functions within the frames of a unit area.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The nonlinear functions of variable x, applied for modeling
made in many branches of applied sciences, are usually approxi-
mated over a limited part of its domain. Among various approx-
imation methods, two are of particular interest: (1) the polynomial
models based on Maclaurin's series expansion and (2) the model
based on the rational functions called as Padé approximants [1–3],
expressed by a quotient Pn(x)/Qm(x) of two polynomials Pn(x) and
Qm(x), with degrees m and n. The Padé function [4–6].

y¼ y0ðx;n;mÞ ¼ ∑n
k ¼ 0akx

k

1þ∑m
l ¼ 1anþ lxl

¼ a0þ∑n
k ¼ 1akx

k

1þ∑m
l ¼ 1anþ lxl

ð1Þ

is applied for the calibration curve method (CCM). At a0¼0, from
Eq. (1) we obtain the function

y¼ y1ðx;n;mÞ ¼ ∑n
k ¼ 1akx

k

1þ∑m
l ¼ 1anþ lxl

ð2Þ

applicable for a standard addition method (SAM). As a rule, the
functions (1) and (2) express the relationships between analytical
signals (y) and concentrations (x) of an analyte. However, when
referred to titrimetric methods of analysis, the roles of x and y are
usually interchanged.

The fit of approximating functions: (1) and (2) to experimental
points {(xj, yj)∣j¼1,…,N} is of primary importance in SAM and CCM.

Rational function provides better approximation to experimental
points {(xj, yj)|j¼1,…, N} than polynomial functions. An illustra-
tion/proof of this property is the fit of polynomial and rational
functions to the function y¼ lnð1þxÞ ¼∑1

k ¼ 0ð�1Þkþ1xkþ1=ðkþ1Þ,
shown in Fig. 1. Among others, the function [7]

y¼ 2x
2þx

ð3Þ

as a particular case of one-parametric relationship y¼y1(x; 1,1)¼
ax/(1þax) (¼x/(bþx), b¼1/a), appears to be better than extension
of ln(1þx) into Maclaurin's series up to 15th component [8], at
x¼1. The function (3) has been widely applied in modifications of
the Gran I method [7–11]. Approximation ex¼(2þx)/(2�x) was
applied in [12]. More extended functions of the Padé type (Eq. (2))
were applied for modeling pH titration curves in the systems of
concentrated electrolytes [13–19], where: x¼h – activity of Hþ

ions, pH¼� log h, y¼W¼V0þV; V0 – volume of titrand (D), V –

volume of titrant (T) added into D at a particular point of titration.
In context with Eq. (2), it should be noted that the common
titration is a kind of SAM, although T in [13–17] contained a
standardized solution, together with a sample tested and a basal
electrolyte. In [17–19], a function of the Padé type was presented
as a sum of simple rational functions, of ai/(xþbi) type; similar
transformation (with Simms’ constants involved) was used later in
[20,21] for calculation of total alkalinity. Using rational functions
requires nonlinear regression [4] and then analytical and physico-
chemical problems involved with Padé approximants were
resolved there according to iterative procedures [22,23].
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As stated above, the rational functions with fewer number of
coefficients give better approximation than the corresponding
polynomial functions [4,24]. Rational functions are particularly
applicable when strongly unsymmetrical dependences occur
[25,26]. The Padé approximants are perceived as an accurate tool
in some extrapolation procedures [27]; this property is particularly
valuable in the context with SAM.

Rational functions were used for modeling enzyme-catalyzed
reactions [28], and for ridge regression [29], where linear terms
were introduced in numerator and denominator of the rational
function in a kinetic model applied for esterification of ethanol
with acetic acid. Another kind of rational function was applied [30]
for flame atomic absorption spectrometry (FAAS) purposes. The
Padé approximants were also considered as a flexible tool used for
modeling adsorption data [31,32], for optimizing sugar production
[26], scanning electrochemical microscopy [33], and handling the
data related to mass transfer at microelectrodes [34,35].

A new formulation involved with rational functions and
applied to SAM and CCM, has been presented recently [36,37]; it
was proved that the functions y¼y1(x; 2,1) and y¼y1(x; 2,2) (see
Eq. (2)) provide the results of FAAS analysis much more accurate
than ones obtained with use of parabolic function [38], y¼y1(x; 2,0).
What is more, the functions y¼y1(x; 2,1) and y¼y1(x; 2,2) appeared
to be robust against an effect of the matrix change, resulting from the
addition of the standard solutions that changed a volume of the
solution up to ca. 30% (the dilution effect was included in the model
applied in [36]). This way, omission of one of the basic assumptions
applied in SAM did not cause a deterioration of the accuracy of
determinations, although SAM is commonly considered as a last
resort rather than the method of choice [39].

In this paper, an effect of m in y¼y0(x; 2,m) (see Eq. (2), n¼2)
on the fit of the related approximating functions to experimental
points (xj, yj) |j¼1,…,N}, expressed by the differences δj¼yj�y0(xj;
2,m), is indicated on an example of CCM applied for nickel
determination according to FAAS method. Then nonlinear models
derived for SAM were applied for results of analyses of potassium

in a wine, and performed according to flame atomic emission
spectrometry (FAES), widely used for determination of sodium and
potassium in biological fluids [40–42]. The nonlinear model
applied in SAM is referred here to the manner of preparation of
analyzed samples (working solutions), different from the one
applied in [36].

The CCM was also applied to results of determination of
salicylic acid (SA) according to HPLC-MS/MS method; the quanti-
tation is based here on comparing areas of peaks (y) obtained from
mass chromatograms at different concentrations (x, mg/L) of SA,
see Eq. (1). The relationships y¼y1(x; n, m) (Eq. (1)) were modeled
here at (n, m)¼(2, 2), (2, 1), (1, 1) and (2, 0), in a logarithmic scale.

Except fitting the curves obtained according to SAM and CCM, a
new, integral criterion of a degree of nonlinearity of the curves
fitted according to nonlinear models is suggested. For this purpose,
the curves are transformed (converted) into a normalized system of
variables, and put within a square with sides equal to unity.
Generally, the normalization is involved here with a uniform,
integral criterion of nonlinearity of curves obtained with use of
different methods of analysis, within different ranges of concentra-
tions for standard solutions, and made under different physico-
chemical conditions, pre-assumed in the analyses. The uniformity
of normalization for CCM and SAM results from the fact that a0,
distinguishing the formulas (1) and (2), is not involved in the
relations applied in the system of normalized coordinates (u, v).

All calculations made within this work were performed accord-
ing to the least squares method (LSM), realized with use of Excel
spreadsheet.

2. Modified standard addition method

It is assumed that N measuring flasks (Vf mL) are used. Equal
volumes V0 mL of a sample tested with unknown concentration x0
[mg/L] of an analyte X and different volumes Vj mL (j¼1,…, N) of
stock solution of X (xS mg/L) were added into jth flask and filled up
to the mark with water. Concentration of X in the jth flask is as
follows:

xj ¼
x0V0þxSVj

Vf
ð4Þ

Applying Eq. (4) to

y¼ y1ðx;2;2Þ ¼
a1xþa2x2

1þa3xþa4x2
ð5Þ

we get the regression equation

yj ¼ d0þd1Vjþd2V
2
j þd11Vjyjþd21V

2
j yjþεj ð6Þ

where:

d0 ¼ ðb1þb2x0V0Þx0V0=z; d1 ¼ ðb1þ2b2x0V0ÞxS=z; d2 ¼ b2x2S=z;

ð7Þ

d11 ¼ –ðb3þ2b4x0V0ÞxS=z; d21 ¼ –b4x2S=z ð7aÞ
and z¼1þb3x0V0þb4x0

2V0
2; b1¼a1/Vf, b2¼a2/Vf

2, b3¼a3/Vf, b4¼a4/
Vf
2. Further transformations of (7) give

x0 ¼
d1xS
2d2V0

1� 1�4d0d2
d21

 !0:5
0
@

1
A ð8Þ

Notations

CCM calibration curve method

LSM least squares method
SA salicylic acid
SAM standard addition method

Approximations of y = ln(1+x)
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Fig. 1. Comparative plots of functions: (A) y¼x, (B) y¼x�x2/2, (C) y¼2x/(2þx),
and (D) y¼x(1þx/6)/(1þ2x/3) (the best fit) with y¼ ln(1þx).
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where d0, d1 and d2 are calculated according to LSM applied to Eq.
(6). Formula (8) is valid also for the functions: y¼y1(x; 2,1) and
y¼y1(x; 2,0), and the function y¼y1(x; 2,m), in general, see Eq. (2) .

3. Rational functions and normalization principle

Let us refer first to the rational function

y¼ y0ðx;2;2Þ ¼
a0þa1xþa2x2

1þa3xþa4x2
ð9Þ

applied for CCM and considered as A-model. Simplified forms of
(9) are called as: B-model (a4¼0), C-model (a4¼a2¼0), and
D-model (a4¼a3¼0); for the D-model we get the parabolic
function

y¼ a0þa1xþa2x2 ð10Þ
Let us take the set of experimental data {(xj, yj)| j¼1,…,N},

where x1ox2o⋯oxN . Denoting Δx¼xN�x1 and Δy¼yN�y1, for
a monotonic function (yjoyjþ1 at j¼1,…, N�1), we introduce the
variables u and v through the relations as follows:

x¼ x1þuΔx and y¼ y1þvΔy ð11Þ
Applying them to the A-model, we get the relation

v¼ vðuÞ ¼ αuþβu2

1þγuþηu2 ð12Þ

where

α¼ ða1þ2a2x1�a3y1�2a4x1y1Þ
1þa3x1þa4x21

Δx
Δy

ð13Þ

β¼ a2�a4y1
1þa3x1þa4x21

ðΔxÞ2
Δy

ð14Þ

γ ¼ a3þ2a4x1
1þa3x1þa4x21

Δx ð15Þ

η¼ a4
1þa3x1þa4x21

ðΔxÞ2 ð16Þ

Note that v(0)¼0. At (u, v)¼(1, 1), we have the relation

αþβ¼ 1þγþη; i:e: η¼ αþβ–γ–1 ð17Þ
The parameters: a0, …, a4 in (13)–(16) are obtained according

to LSM applied to the regression equation

yj ¼ a0þa1xjþa2x2j �a3xjyj�a4x2j yjþ εj ð18Þ
derived from Eq. (9). Note that the formulas (13)–(16) do not
involve a0; it is the basis for introducing a common criterion of
nonlinearity for CCM and SAM. Moreover, the value s¼Δy/Δx,
inherent in α and β (Eqs. (13, 14)), is the mean slope of the curve
expressed by Eq. (9), within the ox1, xN4 interval. For other
models we have: (B) η¼0, (C) η¼β¼0, and (D) η¼γ¼0. In these
cases, Eq. (12) simplifies into the relations:

ðBÞ v¼ αuþβu2

1þγu
ðwhere γ ¼ αþβ–1Þ ð19Þ

ðCÞ v¼ αu
1þγu

ðwhere γ ¼ α–1Þ ð20Þ

ðDÞ v¼ αuþβu2 ðwhere β¼ 1–αÞ ð21Þ
On the basis of formula (12), related to model A, or its simpler

forms (19)–(21), related to models B, C and D, any set of experi-
mental points: {(xj, yj) |j¼1,…,N} in CCM can be presented within
the frames of coordinates (u, v), where uAo0, 14 and vAo0,
14 , see Fig. 2. In all instances, the curve v¼v(u) links the points
(0, 0) and (1, 1) on the (u, v) plane. A reference is the linear

function y¼a0þa1x (a2¼a3¼a4¼0 in Eq. (9)), where we get the
straight line

v¼ u ð22Þ
connecting the points (0, 0) and (1, 1) on the (u, v) plane.

In order to use the formula v¼v(u), applicable for calculations
made according to tables with elementary integrals, one can apply
some transformations of Eqs. (12), (19), (20). Namely, we have for
the A-model

v¼ αuþβu2

1þγuþηu2 ¼
β

η
þ β

2η
α

β
�γ

η

� �
d
du

ln u2þγ

η
uþ1

η

� �

� β

η2
γ

2
α

β
�γ

η

� �
þ1

� �
1

u2þðγ=ηÞuþð1=ηÞ ð23Þ

B-model

v¼ αuþβu2

1þγu
¼ β

γ
uþαγ�β

γ2
�αγ�β

γ3
d
du

ln uþ1
γ

� �
ð24Þ

and C-model

v¼ αu
1þγu

¼ α

γ
� α

γ2
d
du

ln uþ1
γ

� �
ð25Þ

Eq. (21), referred to D-model, needs none preparatory
transformation.

4. The integral criterion of nonlinearity

The area between the lines: v¼v(u) and v¼u (Eq. (22)), plotted
in the normalized coordinates (u, v), is the measure of nonlinearity
of any monotonic relationship obtained on the basis of experi-
mental points {(xj, yj) |j¼1,…,N}, compared with Fig. 1. This area is
expressed as

Ω¼
Z 1

0
jv�ujdu¼

R 1
0 vdu�1

2 f or vZu
1
2�
R 1
0 vdu f or vru

8<
: ð26Þ

For the case exemplified by Fig. 1, we have vZu within uAo0,
14 . From tables of elementary integrals [43] we have

Z
1

aξ2þbξþc
dξ¼Ψ ðΔÞ ¼

2ffiffiffiffiffiffi
�Δ

p � tan �1 2ξþbffiffiffiffiffiffi
�Δ

p
� �

f or Δo0

�2
2aξþb f or Δ¼ 0

1ffiffiffi
Δ

p ln 2aξþb�
ffiffiffi
Δ

p

2aξþbþ
ffiffiffi
Δ

p
��� ��� f or Δ40

8>>>><
>>>>:

ð27Þ

with Δ¼b2�4ac. Setting a¼1, b¼γ/η, c¼1/η and ξ¼u in (27), we
get

Ψ ðΔÞ ¼
Z 1

0

1
u2þðγ=ηÞuþð1=ηÞdu

X = Ni, B-model
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v = u

Fig. 2. The integral criterion of nonlinearity exemplified by CCM, applied for
Ni measured according to FAAS, with use of B-model (see below); ΩB¼0.2598
(Eq. (31)).
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¼ 1ffiffiffi
Δ

p ln
2ηþγ�η

ffiffiffi
Δ

p

2ηþγþη
ffiffiffi
Δ

p γþη
ffiffiffi
Δ

p

γ�η
ffiffiffi
Δ

p
����

���� for Δ40 ð28Þ

where (see Eqs. (15) and (16))

Δ¼ γ

η

� �2

�4
η
¼ a32�4a4

ða4ΔxÞ2
ð29Þ

Then we get

ΩA ¼
β

η
�1
2
þ β

2η
α

β
�γ

η

� �
ðln αþβ Þ

����
� β

η2
γ

2
α

β
�γ

η

� �
þ1

� �
Ψ ðΔÞ; where η¼ αþβ–γ–1 ð30Þ

For Δ40, i.e. at a3
244a4 (Eq. (29)), Ψ(Δ) is expressed by

Eq. (28). Similarly, from (21), (22), (24)–(26), we have (see Fig. 2)

ΩB ¼
1�α

2γ
þðα�1ÞðαþβÞ

γ2
1�1

γ
ln jαþβj

� �
; where γ ¼ αþβ–1 ð31Þ

ΩC ¼
α

α�1
�1
2
� α

ðα�1Þ2
ln αjj ð32Þ

ΩD ¼ α�1
6

ð33Þ

respectively, see Eq. (21).

5. Experimental part

5.1. Apparatus and reagents

The experiments involved with potassium determination were
made on an AAnalyst 200 Flame Atomic Spectrometer (PerkinElmer);
this spectrometer can work according to absorption or emission
mode, in air-acetylene flame. The absorption mode was applied for
Ni and CCM (at 232.0 nm), whereas the emission mode was applied
for K and SAM (at 766.49 nm). Multielement Cu-Fe-Ni Lumina
sHollow Cathode Lamp (PerkinElmer) operating at 30 mA was used.

Analyses of samples with salicylic acid (SA) were made accord-
ing to HPLC-MS/MS and CCM method [44]. To obtain the calibra-
tion curve for SA, full procedure designed for analyses of such
samples has been applied [45]. The chromatographic analyses
were made with use of an Agilent 1200 Series HPLC System
(Agilent, USA) consisting on a vacuum degasser, a binary pump,
an autosampler and a thermostated column compartment. Separa-
tion of SA was achieved using a Zorbax Eclipse XDB–C18 Rapid
Resolution HT (4.6�50 mm2 i.d.; 1.8 mm) analytical column (Agi-
lent, USA). Elution was carried out with acetonitrile (containing
formic acid 0.1%, v/v), as solvent A and aqueous 15 mmol/L
ammonium formate solution (containing formic acid 0.1%, v/v) as
solvent B, at a flow rate of 0.6 mL/min, with the column thermo-
stated at 25 1C. The gradient elution program used was: 0–7 min

Ni (CCM, FAAS)
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Fig. 3. Plots for Ni measured according to FAAS method: (3a) experimental points (xj, yj) approximated by the functions y¼y0(x;2,m), m¼0,1,2; x – concentrations [mg/L] of
Ni, y¼A – absorbance; (3b) the degrees of fit δj¼yj�yj(xj;2,m) of the functions at different x¼xj.

Table 1
Collected points in normal and logarithmic scale for experimental (exp) and calculated (calc) results obtained from the models: A, B, C and D; x – concentrations [mg/L] of SA
in working solutions; y – areas of peaks registered in MS method, expressed in arbitrary units.

x y(exp) y(calc) logy(exp) logy(calc)

A-model B-model C-model D-model A-model B-model C-model D-model

0.10 3148 3525 3339 4747 5139 3.4980 3.5472 3.5236 3.6764 3.7109
0.12 4066 4140 3983 5277 5610 3.6092 3.6171 3.6002 3.7224 3.7489
0.15 4915 5057 4940 6069 6314 3.6915 3.7039 3.6938 3.7831 3.8003
0.17 5659 5664 5572 6594 6783 3.7528 3.7532 3.7460 3.8192 3.8314
0.20 6537 6568 6512 7379 7485 3.8154 3.8174 3.8137 3.8680 3.8742
0.30 9009 9524 9569 9966 9812 3.9547 3.9788 3.9809 3.9985 3.9917
0.50 14878 15193 15369 15008 14407 4.1725 4.1817 4.1866 4.1763 4.1586
0.60 18256 17913 18125 17465 16676 4.2614 4.2532 4.2583 4.2422 4.2221
0.70 21316 20561 20793 19881 18926 4.3287 4.3130 4.3179 4.2984 4.2770
0.90 26156 25654 25888 24595 23367 4.4176 4.4091 4.4131 4.3908 4.3686
1.00 28516 28104 28325 26894 25558 4.4551 4.4488 4.4522 4.4297 4.4075
1.50 39218 39497 39560 37852 36226 4.5935 4.5966 4.5973 4.5781 4.5590
2.00 50393 49659 49508 47984 46412 4.7024 4.6960 4.6947 4.6811 4.6666
3.00 65695 67128 66652 66123 65334 4.8175 4.8269 4.8238 4.8204 4.8151
5.00 94866 94520 94231 95719 97385 4.9771 4.9755 4.9742 4.9810 4.9885
7.00 116580 116430 116945 118842 121712 5.0666 5.0661 5.0680 5.0750 5.0853

10.0 146536 146611 146468 145381 143719 5.1659 5.1662 5.1657 5.1625 5.1575
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linear gradient, from 10% to 35% of solvent A. Mass spectrometry
analyses were performed on a 6410 Triple Quadrupole (QqQ) mass
spectrometer (MS) equipped with an electrospray ionization
source (ESI) (Agilent, USA). Ionization of analytes was carried out
using the following settings: capillary voltage: �3 kV, drying-gas
flow rate: 9 L/min, drying-gas temperature 350 1C, and nebulizer
pressure 40 psi. Negative ionization mode was monitored. Ions
were analyzed in multiple reaction monitoring (MRM) mode. Two
MRM transitions were established for SA, according to the decision
[46] concerning the performance of analytical methods and inter-
pretation of results.

All reagents were of analytical purity grade. Methanol (99.9%)
or ultrapure water was used for preparation of all (stock and
working) solutions.

5.2. Working solutions

5.2.1. Ni(NO3)2 solution
Nickel(II) nitrate hexahydrate for analysis (99,999%, Sigma-

Aldrich) [47] was used to prepare 1.000 g/L of Ni standard solution
by weighting 49,548 g of salt to prepare 1 L of solution in a
volumetric flask. A working standard solution containing
125 mg/L of Ni was prepared from this standard solution. The
adequate volume of working standard solution was added to
25 mL volumetric flasks to obtain the calibration standards.
Measurements for each calibration solution were repeated thrice,
and the absorbance at a given point was the mean value. All
dilutions were made with ultrapure water.

5.2.2. KCl solution
A weighed portion 3.8326 g of KCl (99.5%, Merck) was used for

preparation of 1 L of 2.000 g/L K standard solution; 3.8326�39.09/

74.54�100/99.5¼2.000. A stock solution (xS¼100 mg/L K) was pre-
pared by dilution of this solution. A portion VW¼5 mL of white wine
(xW mg/L K) was diluted to VWn ¼100 mL and V0¼1 mL of the
resulting solution (x0 mg/L) was added into jth, Vf¼25 mL flask,
containing Vj mL of working standard solution to obtain the spike
concentrations; xW¼100/5x0¼20x0.

5.2.3. Salicylic acid solution
Stock solution of 10 mg/L of salicylic acid (SA) was prepared by

dissolution of the preparation (499%, from Sigma-Aldrich (Stein-
heim, Germany)) in methanol (499.9%, from Romil (Barcelona,
Spain)) and stored at 4 1C. All working solutions (see Table 1) were
prepared in 1 mL flasks by dilution of portions (70.001 mL) of the
solution to the mark with methanol. This way, the concentration
range 0.10–10.0 [mg/L] of SA in working solutions taken for
preparation of calibration curve was covered.

6. Results and discussion

6.1. CCM for Ni

The CCM procedure, realized with use of Eq. (1), was applied
first for results for absorbance (y¼A) measured for Ni solutions
according to the FAAS method (Fig. 3a). The fit of the curves
A¼A0(x; 2,m) (Eq. (2)) for n¼2 and m¼2,1,0 is presented in
Fig. 3b; the best fit occurs for A¼A0(x; 2,2), and the worst for
A¼A0(x; 2,0). The exemplary plot, related to normalization made
according to B-model (m¼1, Eq. (24)), is presented in Fig. 2; the
value ΩB¼0.2598, calculated from Eq. (31), is the numerical value
of nonlinearity related to this model.

As is apparent from Fig. 3a, black line related to m¼2 and m¼1
practically overlap. This means that the B-model is perfectly
adequate. This also means that the use of models with higher m-
values is quite useless, in this respect.

Curve v¼v(u) shows a significant degree of non-linearity
expressed in Fig. 2 by the value ΩB¼25.98%. This in turn causes
the model y¼y0(x; 2,0) inadequate, in a high degree. Moreover, a
suitable curve passes through a maximum, which does not result
from the arrangement of experimental points and assumption
(yjþ14yj or yjþ1oyj at xjþ14xj put for j¼1,…,N�1). Non-
monotonic course of the curve y¼y0(x, 2.0) (Fig. 3a) causes a
non-monotonic course of the related curve v¼v(u), in Fig. 4.

6.2. SAM for K

The SAM procedure, realized with use of Eq. (2), in context with
the algorithms presented above (Eq. (8)), was applied for results
(Fig. 5) obtained for K measured according to FAES method. The
solutions from the flasks were aspirated into the nebulizer of the

Fig. 5. The experimental points (a), and (b) the relation between δj¼yj�y1(Vj; 2, m) vs. V for y¼EI (emission intensity), at different m-values in the model given by Eq. (2) at
n¼2 for potassium determined according to FAES method.
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Fig. 4. Plot of v¼v(u) obtained from experimental data in Fig. 3; calculated
ΩD¼0.2293.
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Fig. 6. I-A, I-B, I-C, I-D – experimental points {(log xj, log yj)|j¼1,…, N} and curves plotted according to models A, B, C, D and II-A, II-B, II-C, II-D – plots of areas ΩA, ΩB, ΩC and
ΩD between the curves v¼v(u) plotted according to models A, B, C and D and the line v¼u in the normalized system of coordinates (u, v).
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spectrometer and emission intensity (EI) was measured. Signals
from solutions with 26–30 mg/L K were omitted, because a warn-
ing of the instrument concerning to the saturation of the detector,
i.e. the points Vr6 in Fig. 5a were involved in calculations. In the
context of the degree of fit of the curves to experimental points
within the V-range in Fig. 5b one can assume that the curve for
m¼2 refers to the most adequate model applicable for calculation
of x0 value. The x0 values are there as follows: 10,782 for
m¼29,802 for m¼1, and 14,903 for m¼0. The belief that
x0E108 stems also from inferences arising from the course of
the curves in Fig. 1, and from the literature data [30].

6.3. CCM for salicylic acid

Salicylic acid (SA), as the main metabolite of aspirin (acetylsa-
licylic acid), is one of contaminants in surface waters. Analysis of
SA samples according to HPLC-MS/MS was made as presented
above. SA is readily ionized under soft ESI conditions to yield the
deprotonated [M–H]� ion at m/z 137.1 Da, in the negative mode.
Upon collision-induced dissociation (CID), a major product ion at
m/z 93.1 Da is observed that corresponds to the loss of CO2:
C6H5(OH)COO�¼C6H5OH � þCO2. This transition of 137.1 Da (pre-
cursor ion) to 93.1 Da (the fragmentation ion, with the highest
response) is commonly selected for quantification purposes of SA
based on (HPLC-MS/MS) tandem mass spectrometry (QqQ-MS).
Conditions of the analysis: fragmenter 80 V, and collision energy
15 eV.

The results of measurements, presented in Table 1, with
integrated areas (yj) of the related peaks obtained from a series
of N¼17 working SA solutions, with concentrations xj covering the
range 0.1–10 mg/L SA, are presented in the first (I) column of Fig. 6
in logarithmic scale, {(log xj, log yj)|j¼1,…, N}, together with the
approximating lines, referred to models A, B, C and D. It is stated
that the curves related to models A and B fit the experimental
points quite satisfactorily; only at lowest SA concentrations,
the approximation is not so good. The sum of squares
SS¼∑17

j ¼ 1ðlog yjðexpÞ�ðlog yjðcalcÞÞ2 is equal to: 0.0039 for A,
0.0019 for B, 0.0656 for C and 0.0998 for D, i.e. the approximations
of the models C and D are much worse. This demonstrates the
usefulness of the models A and B. Application of rational functions
y¼y(x; n, m) with higher n and m values is not suggested.

The curves y¼y(x; n, m) approximating the experimental
points {(xj, yj) | j¼1,…, N} appear clearly non-linear course,
expressed by the values: ΩA¼0.1086, ΩB¼0.1056, ΩC¼0.1041,
ΩD¼0.1016 obtained from the models A, B, C and D, respectively
(Eqs. (30)–(33)). The related graphs are shown in the second (II)
column in Fig. 6. Similarity in Ω-values, within ca. 10%, means that
the mismatch between the experimental points and respective
approximating function visible in the column I does not translate
into a significant effect on the Ω-value that expresses the respec-
tive area in the column II. This is due to the fact that this mismatch
has essentially a place for low x-values, where the appropriate
signal y is relatively small.

7. Final comments

In this paper, the new formulation based on application of
the rational functions y¼y(x; n,m) of the Padé type (Padé appox-
imants, Eqs. (1, 2)) is presented in context with calibration curve
(CCM) and standard addition (SAM) methods. It was found that
the Padé approximants are far more applicable than polynomial
functions when applied for modeling purposes. A uniform criter-
ion of nonlinearity of the functions obtained in CCM and SAM is
also presented. This criterion is based on the calculation of area Ω
between the lines v¼v(u) and v¼u within the unit plane of

normalized variables (u, v). The usefulness of this approach was
tested on three different methods of spectrometric analyses.

Calibration curves in the system considered are characterized
by a high degree of non-linearity. The numerical value of the area
Ω does not depend significantly on the misfit of calibration curve
at lower concentrations. This normalization provides a uniform,
integral criterion of nonlinearity of curves obtained with use of
different methods of analysis, within different ranges of concen-
trations assumed for standard solutions, and made under different
physicochemical conditions pre-assumed in the analysis. It
appears to be far more general and more robust than the
approaches to nonlinearity criteria suggested elsewhere [48] (see
also references cited therein).
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